光模塊PCB線路板,剛柔結合板
價格面議2022-07-12 00:05:13
————認證資質————
- 個人未認證
- 企業(yè)已認證
- 微信未認證
- 手機已認證
線上溝通
與商家溝通核實商家資質
線下服務
核實商家身份所有交流確保留有證據(jù)
服務售后
有保障期的服務請與商家確定保障實效
基材 | 銅 | 層數(shù) | 多面 |
絕緣層厚度 | 常規(guī)板 | 絕緣材料 | 有機樹脂 |
絕緣樹脂 | 環(huán)氧樹脂(EP) | 阻燃特性 | VO板 |
光模塊PCB線路板,剛柔結合板
高速PCB設計指南之二
第二篇 PCB布局
在設計中,布局是一個重要的環(huán)節(jié)。布局結果的好壞將直接影響布線的效果,因此可以這樣認為,合理的布局是PCB設計成功的第一步。
布局的方式分兩種,一種是交互式布局,另一種是自動布局,一般是在自動布局的基礎上用交互式布局進行調整,在布局時還可根據(jù)走線的情況對門電路進行再分配,將兩個門電路進行交換,使其成為便于布線的最佳布局。在布局完成后,還可對設計文件及有關信息進行返回標注于原理圖,使得PCB板中的有關信息與原理圖相一致,以便在今后的建檔、更改設計能同步起來, 同時對模擬的有關信息進行更新,使得能對電路的電氣性能及功能進行板級驗證。
--考慮整體美觀
一個產品的成功與否,一是要注重內在質量,二是兼顧整體的美觀,兩者都較完美才能認為該產品是成功的。
在一個PCB板上,元件的布局要求要均衡,疏密有序,不能頭重腳輕或一頭沉。
--布局的檢查印制板尺寸是否與加工圖紙尺寸相符?能否符合PCB制造工藝要求?有無定位標記?
元件在二維、三維空間上有無沖突?
元件布局是否疏密有序,排列整齊?是否全部布完?
需經(jīng)常更換的元件能否方便的更換?插件板插入設備是否方便?
熱敏元件與發(fā)熱元件之間是否有適當?shù)木嚯x?
調整可調元件是否方便?
在需要散熱的地方,裝了散熱器沒有?空氣流是否通暢?
信號流程是否順暢且互連最短?
插頭、插座等與機械設計是否矛盾?
線路的干擾問題是否有所考慮?


高速PCB設計指南之三
第三篇 高速PCB設計
(一)、電子系統(tǒng)設計所面臨的挑戰(zhàn)
隨著系統(tǒng)設計復雜性和集成度的大規(guī)模提高,電子系統(tǒng)設計師們正在從事100MHZ以上的電路設計,總線的工作頻率也已經(jīng)達到或者超過50MHZ,有的甚至超過100MHZ。目前約50% 的設計的時鐘頻率超過50MHz,將近20% 的設計主頻超過120MHz。
當系統(tǒng)工作在50MHz時,將產生傳輸線效應和信號的完整性問題;而當系統(tǒng)時鐘達到120MHz時,除非使用高速電路設計知識,否則基于傳統(tǒng)方法設計的PCB將無法工作。因此,高速電路設計技術已經(jīng)成為電子系統(tǒng)設計師必須采取的設計手段。只有通過使用高速電路設計師的設計技術,才能實現(xiàn)設計過程的可控性。
(二)、什么是高速電路
通常認為如果數(shù)字邏輯電路的頻率達到或者超過45MHZ~50MHZ,而且工作在這個頻率之上的電路已經(jīng)占到了整個電子系統(tǒng)一定的份量(比如說1/3),就稱為高速電路。
實際上,信號邊沿的諧波頻率比信號本身的頻率高,是信號快速變化的上升沿與下降沿(或稱信號的跳變)引發(fā)了信號傳輸?shù)姆穷A期結果。因此,通常約定如果線傳播延時大于1/2數(shù)字信號驅動端的上升時間,則認為此類信號是高速信號并產生傳輸線效應。
信號的傳遞發(fā)生在信號狀態(tài)改變的瞬間,如上升或下降時間。信號從驅動端到接收端經(jīng)過一段固定的時間,如果傳輸時間小于1/2的上升或下降時間,那么來自接收端的反射信號將在信號改變狀態(tài)之前到達驅動端。反之,反射信號將在信號改變狀態(tài)之后到達驅動端。如果反射信號很強,疊加的波形就有可能會改變邏輯狀態(tài)。
(三)、高速信號的確定
上面我們定義了傳輸線效應發(fā)生的前提條件,但是如何得知線延時是否大于1/2驅動端的信號上升時間?一般地,信號上升時間的典型值可通過器件手冊給出,而信號的傳播時間在PCB設計中由實際布線長度決定。下圖為信號上升時間和允許的布線長度(延時)的對應關系?!?br /> PCB 板上每單位英寸的延時為 0.167ns.。但是,如果過孔多,器件管腳多,網(wǎng)線上設置的約束多,延時將增大。通常高速邏輯器件的信號上升時間大約為0.2ns。如果板上有GaAs芯片,則最大布線長度為7.62mm。
設Tr為信號上升時間, Tpd 為信號線傳播延時。如果Tr≥4Tpd,信號落在安全區(qū)域。如果2Tpd≥Tr≥4Tpd,信號落在不確定區(qū)域。如果Tr≤2Tpd,信號落在問題區(qū)域。對于落在不確定區(qū)域及問題區(qū)域的信號,應該使用高速布線方法。
(四)、什么是傳輸線
PCB板上的走線可等效為下圖所示的串聯(lián)和并聯(lián)的電容、電阻和電感結構。串聯(lián)電阻的典型值0.25-0.55 ohms/foot,因為絕緣層的緣故,并聯(lián)電阻阻值通常很高。將寄生電阻、電容和電感加到實際的PCB連線中之后,連線上的最終阻抗稱為特征阻抗Zo。線徑越寬,距電源/地越近,或隔離層的介電常數(shù)越高,特征阻抗就越小。如果傳輸線和接收端的阻抗不匹配,那么輸出的電流信號和信號最終的穩(wěn)定狀態(tài)將不同,這就引起信號在接收端產生反射,這個反射信號將傳回信號發(fā)射端并再次反射回來。隨著能量的減弱反射信號的幅度將減小,直到信號的電壓和電流達到穩(wěn)定。這種效應被稱為振蕩,信號的振蕩在信號的上升沿和下降沿經(jīng)??梢钥吹健?br />
(五)、傳輸線效應
基于上述定義的傳輸線模型,歸納起來,傳輸線會對整個電路設計帶來以下效應。
· 反射信號Reflected signals
· 延時和時序錯誤Delay & Timing errors
· 多次跨越邏輯電平門限錯誤False Switching
· 過沖與下沖Overshoot/Undershoot
· 串擾Induced Noise (or crosstalk)
· 電磁輻射EMI radiation
5.1 反射信號
如果一根走線沒有被正確終結(終端匹配),那么來自于驅動端的信號脈沖在接收端被反射,從而引發(fā)不預期效應,使信號輪廓失真。當失真變形非常顯著時可導致多種錯誤,引起設計失敗。同時,失真變形的信號對噪聲的敏感性增加了,也會引起設計失敗。如果上述情況沒有被足夠考慮,EMI將顯著增加,這就不單單影響自身設計結果,還會造成整個系統(tǒng)的失敗。
反射信號產生的主要原因:過長的走線;未被匹配終結的傳輸線,過量電容或電感以及阻抗失配。
5.2 延時和時序錯誤
信號延時和時序錯誤表現(xiàn)為:信號在邏輯電平的高與低門限之間變化時保持一段時間信號不跳變。過多的信號延時可能導致時序錯誤和器件功能的混亂。
通常在有多個接收端時會出現(xiàn)問題。電路設計師必須確定最壞情況下的時間延時以確保設計的正確性。信號延時產生的原因:驅動過載,走線過長。
5.3 多次跨越邏輯電平門限錯誤
信號在跳變的過程中可能多次跨越邏輯電平門限從而導致這一類型的錯誤。多次跨越邏輯電平門限錯誤是信號振蕩的一種特殊的形式,即信號的振蕩發(fā)生在邏輯電平門限附近,多次跨越邏輯電平門限會導致邏輯功能紊亂。反射信號產生的原因:過長的走線,未被終結的傳輸線,過量電容或電感以及阻抗失配。
5.4 過沖與下沖
過沖與下沖來源于走線過長或者信號變化太快兩方面的原因。雖然大多數(shù)元件接收端有輸入保護二極管保護,但有時這些過沖電平會遠遠超過元件電源電壓范圍,損壞元器件。
5.5 串擾
串擾表現(xiàn)為在一根信號線上有信號通過時,在PCB板上與之相鄰的信號線上就會感應出相關的信號,我們稱之為串擾。
信號線距離地線越近,線間距越大,產生的串擾信號越小。異步信號和時鐘信號更容易產生串擾。因此解串擾的方法是移開發(fā)生串擾的信號或屏蔽被嚴重干擾的信號。
5.6 電磁輻射
EMI(Electro-Magnetic Interference)即電磁干擾,產生的問題包含過量的電磁輻射及對電磁輻射的敏感性兩方面。EMI表現(xiàn)為當數(shù)字系統(tǒng)加電運行時,會對周圍環(huán)境輻射電磁波,從而干擾周圍環(huán)境中電子設備的正常工作。它產生的主要原因是電路工作頻率太高以及布局布線不合理。目前已有進行 EMI仿真的軟件工具,但EMI仿真器都很昂貴,仿真參數(shù)和邊界條件設置又很困難,這將直接影響仿真結果的準確性和實用性。最通常的做法是將控制EMI的各項設計規(guī)則應用在設計的每一環(huán)節(jié),實現(xiàn)在設計各環(huán)節(jié)上的規(guī)則驅動和控制。
(六)、避免傳輸線效應的方法
針對上述傳輸線問題所引入的影響,我們從以下幾方面談談控制這些影響的方法。
6.1 嚴格控制關鍵網(wǎng)線的走線長度
如果設計中有高速跳變的邊沿,就必須考慮到在PCB板上存在傳輸線效應的問題?,F(xiàn)在普遍使用的很高時鐘頻率的快速集成電路芯片更是存在這樣的問題。解決這個問題有一些基本原則:如果采用CMOS或TTL電路進行設計,工作頻率小于10MHz,布線長度應不大于7英寸。工作頻率在50MHz布線長度應不大于1.5英寸。如果工作頻率達到或超過75MHz布線長度應在1英寸。對于GaAs芯片最大的布線長度應為0.3英寸。如果超過這個標準,就存在傳輸線的問題。
6.2 合理規(guī)劃走線的拓撲結構
解決傳輸線效應的另一個方法是選擇正確的布線路徑和終端拓撲結構。走線的拓撲結構是指一根網(wǎng)線的布線順序及布線結構。當使用高速邏輯器件時,除非走線分支長度保持很短,否則邊沿快速變化的信號將被信號主干走線上的分支走線所扭曲。通常情形下,PCB走線采用兩種基本拓撲結構,即菊花鏈(Daisy Chain)布線和星形(Star)分布。
對于菊花鏈布線,布線從驅動端開始,依次到達各接收端。如果使用串聯(lián)電阻來改變信號特性,串聯(lián)電阻的位置應該緊靠驅動端。在控制走線的高次諧波干擾方面,菊花鏈走線效果最好。但這種走線方式布通率最低,不容易100%布通。實際設計中,我們是使菊花鏈布線中分支長度盡可能短,安全的長度值應該是:Stub Delay <= Trt *0.1.
例如,高速TTL電路中的分支端長度應小于1.5英寸。這種拓撲結構占用的布線空間較小并可用單一電阻匹配終結。但是這種走線結構使得在不同的信號接收端信號的接收是不同步的。
星形拓撲結構可以有效的避免時鐘信號的不同步問題,但在密度很高的PCB板上手工完成布線十分困難。采用自動布線器是完成星型布線的最好的方法。每條分支上都需要終端電阻。終端電阻的阻值應和連線的特征阻抗相匹配。這可通過手工計算,也可通過CAD工具計算出特征阻抗值和終端匹配電阻值?!?br />
在上面的兩個例子中使用了簡單的終端電阻,實際中可選擇使用更復雜的匹配終端。第一種選擇是RC匹配終端。RC匹配終端可以減少功率消耗,但只能使用于信號工作比較穩(wěn)定的情況。這種方式最適合于對時鐘線信號進行匹配處理。其缺點是RC匹配終端中的電容可能影響信號的形狀和傳播速度。
串聯(lián)電阻匹配終端不會產生額外的功率消耗,但會減慢信號的傳輸。這種方式用于時間延遲影響不大的總線驅動電路?! 〈?lián)電阻匹配終端的優(yōu)勢還在于可以減少板上器件的使用數(shù)量和連線密度。
最后一種方式為分離匹配終端,這種方式匹配元件需要放置在接收端附近。其優(yōu)點是不會拉低信號,并且可以很好的避免噪聲。典型的用于TTL輸入信號(ACT,HCT, FAST)。
此外,對于終端匹配電阻的封裝型式和安裝型式也必須考慮。通常SMD表面貼裝電阻比通孔元件具有較低的電感,所以SMD封裝元件成為首選。如果選擇普通直插電阻也有兩種安裝方式可選:垂直方式和水平方式。
垂直安裝方式中電阻的一條安裝管腳很短,可以減少電阻和電路板間的熱阻,使電阻的熱量更加容易散發(fā)到空氣中。但較長的垂直安裝會增加電阻的電感。水平安裝方式因安裝較低有更低的電感。但過熱的電阻會出現(xiàn)漂移,在最壞的情況下電阻成為開路,造成PCB走線終結匹配失效,成為潛在的失敗因素。
6.3 抑止電磁干擾的方法
很好地解決信號完整性問題將改善PCB板的電磁兼容性(EMC)。其中非常重要的是保證PCB板有很好的接地。對復雜的設計采用一個信號層配一個地線層是十分有效的方法。此外,使電路板的最外層信號的密度最小也是減少電磁輻射的好方法,這種方法可采用"表面積層"技術"Build-up"設計制做PCB來實現(xiàn)。表面積層通過在普通工藝 PCB 上增加薄絕緣層和用于貫穿這些層的微孔的組合來實現(xiàn),電阻和電容可埋在表層下,單位面積上的走線密度會增加近一倍,因而可降低 PCB的體積。PCB面積的縮小對走線的拓撲結構有巨大的影響,這意味著縮小的電流回路,縮小的分支走線長度,而電磁輻射近似正比于電流回路的面積;同時小體積特征意味著高密度引腳封裝器件可以被使用,這又使得連線長度下降,從而電流回路減小,提高電磁兼容特性。
6.4 其它可采用技術
為減小集成電路芯片電源上的電壓瞬時過沖,應該為集成電路芯片添加去耦電容。這可以有效去除電源上的毛刺的影響并減少在印制板上的電源環(huán)路的輻射。
當去耦電容直接連接在集成電路的電源管腿上而不是連接在電源層上時,其平滑毛刺的效果最好。這就是為什么有一些器件插座上帶有去耦電容,而有的器件要求去耦電容距器件的距離要足夠的小。
任何高速和高功耗的器件應盡量放置在一起以減少電源電壓瞬時過沖。
如果沒有電源層,那么長的電源連線會在信號和回路間形成環(huán)路,成為輻射源和易感應電路。
走線構成一個不穿過同一網(wǎng)線或其它走線的環(huán)路的情況稱為開環(huán)。如果環(huán)路穿過同一網(wǎng)線其它走線則構成閉環(huán)。兩種情況都會形成天線效應(線天線和環(huán)形天線)。天線對外產生EMI輻射,同時自身也是敏感電路。閉環(huán)是一個必須考慮的問題,因為它產生的輻射與閉環(huán)面積近似成正比。
結束語
高速電路設計是一個非常復雜的設計過程。本文所闡述的方法就是專門針對解決這些高速電路設計問題的。此外,在進行高速電路設計時有多個因素需要加以考慮,這些因素有時互相對立。如高速器件布局時位置靠近,雖可以減少延時,但可能產生串擾和顯著的熱效應。因此在設計中,需權衡各因素,做出全面的折衷考慮;既滿足設計要求,又降低設計復雜度。高速PCB設計手段的采用構成了設計過程的可控性,只有可控的,才是可靠的,也才能是成功的!


PCB電路板無鉛噴錫與有鉛噴錫除了環(huán)保差異外,還有哪些區(qū)別呢?
隨著電子行業(yè)不斷的發(fā)展,PCB的技術水平也在水漲船高,常見的表面處理工藝就有噴錫,沉金,鍍金,OSP等;其中噴錫分為無鉛噴錫和有鉛噴錫。那么,PCB電路板無鉛噴錫與有鉛噴錫的區(qū)別在哪?
1、無鉛噴錫屬于環(huán)保類工藝,不含有害物質"鉛",熔點在218度左右;錫爐溫度需控制在280-300度;過波峰焊溫度需控制在260度左右;過回流焊溫度在260-270度左右。
2、有鉛噴錫不屬于環(huán)保類工藝,含有害物質"鉛",熔點183度左右;錫爐溫度需控制在245-260度;過波峰焊溫度需控制在250度左右;過回流焊溫度在245-255度左右。
3、從錫的表面看,有鉛錫比較亮,無鉛錫比較暗淡;無鉛板的浸潤性要比有鉛板的差一點。
4、無鉛錫的鉛含量不超過0.5 ,有鉛錫的鉛含量達到37。
5、鉛會提高錫線在焊接過程中的活性,有鉛錫線相對比無鉛錫線好用;不過鉛有毒,長期使用對人體不好。無鉛錫比有鉛錫熔點高,焊接點會牢固很多。
6、在pcb板表面處理中,通常做無鉛噴錫和有鉛噴錫的價格是一樣的,沒有區(qū)別。


陶瓷PCB電路板有什么優(yōu)勢呢?
1.為什么要選擇陶瓷電路板?
陶瓷基板,由于散熱性能、載流能力、絕緣性、熱膨脹系數(shù)等,都要大大優(yōu)于普通的玻璃纖維PCB板材,從而被廣泛應用于大功率電力電子模塊、航空航天、軍工電子等產品上。
普通PCB通常是由銅箔和基板粘合而成,而基板材質大多數(shù)為玻璃纖維(FR-4),酚醛樹脂(FR-3)等材質,粘合劑通常是酚醛、環(huán)氧等。在PCB加工過程中由于熱應力、化學因素、生產工藝不當?shù)仍?,或者是在設計過程中由于兩面鋪銅不對稱,很容易導致PCB板發(fā)生不同程度的翹曲。
與普通的PCB使用粘合劑把銅箔和基板粘合在一起的,陶瓷PCB是在高溫環(huán)境下,通過鍵合的方式把銅箔和陶瓷基片拼合在一起的,結合力強,銅箔不會脫落,可靠性高,在溫度高、濕度大的環(huán)境下性能穩(wěn)定。
2.陶瓷基板的材質有哪些?
氮化鋁(AlN)
氮化鋁陶瓷是以氮化鋁粉體為主晶相的陶瓷。相比于氧化鋁陶瓷基板,絕緣電阻、絕緣耐壓更高,介電常數(shù)更低。其熱導率是Al2O3的7~10倍,熱膨脹系數(shù)(CTE)與硅片近似匹配,這對于大功率半導體芯片至關重要。在生產工藝上,AlN熱導率受到殘留氧雜質含量的影響很大,降低含氧量,可明顯提高熱導率。目前工藝生產水平的熱導率達到170W/(m·K)以上已不成問題。
氧化鋁(Al2O3)
氧化鋁是陶瓷基板中最常用的基板材料,因為在機械、熱、電性能上相對于大多數(shù)其他氧化物陶瓷,強度及化學穩(wěn)定性高,且原料來源豐富,適用于各種各樣的技術制造以及不同的形狀。按含氧化鋁(Al2O3)的百分數(shù)不同可分為:75瓷、96瓷、99.5瓷。氧化鋁含有量不同,其電學性質幾乎不受影響,但是其機械性能及熱導率變化很大。純度低的基板中玻璃相較多,表面粗糙度大。純度越高的基板,越光潔、致密、介質損耗越低,但是價格也越高。
氧化鈹(BeO)
具有比金屬鋁還高的熱導率,應用于需要高熱導的場合,溫度超過300℃后迅速降低,但是由于其毒性限制了自身的發(fā)展。
綜合以上原因,可以知道,氧化鋁陶瓷由于比較優(yōu)越的綜合性能,在微電子、功率電子、混合微電子、功率模塊等領域還是處于主導地位的。
對比了市面上相同尺寸(100mm×100mm×1mm)、不同材料的陶瓷基板價格:96%氧化鋁9.5元,99%氧化鋁18元,氮化鋁150元,氧化鈹650元,可以看出來不同的基板價格差距也比較大。
3.陶瓷PCB的優(yōu)勢與劣勢?
優(yōu)點:
載流量大,100A電流連續(xù)通過1mm0.3mm厚銅體,溫升約17℃;100A電流連續(xù)通過2mm0.3mm厚銅體,溫升僅5℃左右;
更好的散熱性能,低熱膨脹系數(shù),形狀穩(wěn)定,不易變形翹曲。
絕緣性好,耐壓高,保障人身安全和設備。
結合力強,采用鍵合技術,銅箔不會脫落。
可靠性高,在溫度高、濕度大的環(huán)境下性能穩(wěn)定
缺點:
易碎,這是最主要的一個缺點,這也就導致只能制作小面積的電路板。
價格貴, 電子產品的要求規(guī)則越來越多,陶瓷電路板還是用在一些比較高端的產品上面,低端的產品根本不會使用到。


高精密度(HDI板)電路板的耐熱性介紹
HDI板的耐熱性能是HDI可靠性能中重要的一個項目,HDI板的板厚變得越來越薄,對其耐熱性能的要求也越來越高。無鉛化進程的推進,也提高了HDI板耐熱性能的要求,而且由于HDI板在層結構等方面不同于普通多層通孔PCB板,因此HDI板的耐熱性能與普通多層通孔PCB板相比有所不同,一階HDI板典型結構。HDI板的耐熱性能缺陷主要是爆板和分層。到目前為止,根據(jù)多種材料以及多款HDI板的耐熱性能測試的經(jīng)驗,發(fā)現(xiàn)HDI板發(fā)生爆板機率最大的區(qū)域是密集埋孔的上方以及大銅面的下方區(qū)域。
耐熱性是指PCB抵抗在焊接過程中產生的熱機械應力的能力, PCB在耐熱性能測試中發(fā)生分層的機制一般包括以下幾種:
1) 測試樣品內部不同材料在溫度變化時,膨脹和收縮性能不同而在樣品內部產生內部熱機械應力,從而導致裂縫和分層的產生。
2) 測試樣品內部的微小缺陷(包括空洞,微裂紋等),是熱機械應力集中所在,起到應力的放大器的作用。在樣品內部應力的作用下,更加容易導致裂縫或分層的產生。
3) 測試樣品中揮發(fā)性物質(包括有機揮發(fā)成分和水),在高溫和劇烈溫度變化時,急劇膨脹產生巨大的內部蒸汽壓力,當膨脹的蒸汽壓力到達測試樣品內部的微小缺陷(包括空洞,微裂紋等)時,微小缺陷對應的放大器作用就會導致分層。
HDI板容易在密集埋孔的上方發(fā)生分層,這是由于HDI板在埋孔分布區(qū)域特殊的結構所導致的。有無埋孔區(qū)域的應力分析如下表1。無埋孔區(qū)域(結構1)在耐熱性能測試受熱膨脹時,在同一平面上各個位置的Z方向的膨脹量都是均勻的,因此不會存在由于結構的差異造成的應力集中區(qū)域。當區(qū)域中設計有埋孔且埋孔鉆在基材面上(結構2)時,在埋孔與埋孔之間的A-A截面上,由于基材沒有收到埋孔在Z方向的約束,因而膨脹量較大,而在埋孔和焊盤所在的B-B截面上,由于基材受到埋孔在Z方向的約束,因而膨脹量較小,這三處膨脹量的差異,在埋孔焊盤與HDI介質和塞孔樹脂交界處和附近區(qū)域造成應力集中,從而比較容易形成裂縫和分層。
HDI板容易在外層大銅面的下方發(fā)生分層,這是由于在貼裝和焊接時,PCB受熱,揮發(fā)性物質(包括有機揮發(fā)成分和水)急劇膨脹,外層大銅面阻擋了揮發(fā)性物質(包括有機揮發(fā)成分和水)的及時逸出,因此產生巨大的內部蒸汽壓力,當膨脹的蒸汽壓力到達測試樣品內部的微小缺陷(包括空洞,微裂紋等)時,微小缺陷對應的放大器作用就會導致分層。


超實用的高頻PCB電路設計70問答 之二
21.在電路板尺寸固定的情況下,如果設計中需要容納更多的功能,就往往需要提高 PCB 的走線密度,但是這樣有可能導致走線的相互干擾增強,同時走線過細也使阻抗無法降低,請專家介紹在高速(>100MHz)高密度 PCB 設計中的技巧?
在設計高速高密度 PCB 時,串擾(crosstalk interference)確實是要特別注意的,因為它對時序(timing)與信號完整性(signal integrity)有很大的影響。以下提供幾個注意的地方:
控制走線特性阻抗的連續(xù)與匹配。
走線間距的大小。一般??吹降拈g距為兩倍線寬??梢酝高^仿真來知道走線間距對時序及信號完整性的影響,找出可容忍的最小間距。不同芯片信號的結果可能不同。
選擇適當?shù)亩私臃绞健?br />
避免上下相鄰兩層的走線方向相同,甚至有走線正好上下重疊在一起,因為這種串擾比同層相鄰走線的情形還大。
利用盲埋孔(blind/buried via)來增加走線面積。但是 PCB 板的制作成本會增加。在實際執(zhí)行時確實很難達到完全平行與等長,不過還是要盡量做到。
除此以外,可以預留差分端接和共模端接,以緩和對時序與信號完整性的影響。
22.電路板 DEBUG 應從那幾個方面著手?
就數(shù)字電路而言,首先先依序確定三件事情: 1. 確認所有電源值的大小均達到設計所需。有些多重電源的系統(tǒng)可能會要求某些電源之間起來的順序與快慢有某種規(guī)范。 2. 確認所有時鐘信號頻率都工作正常且信號邊緣上沒有非單調(non-monotonic)的問題。3. 確認 reset 信號是否達到規(guī)范要求。 這些都正常的話,芯片應該要發(fā)出第一個周期(cycle)的信號。接下來依照系統(tǒng)運作原理與 bus protocol 來 debug。
23、濾波時選用電感,電容值的方法是什么?
電感值的選用除了考慮所想濾掉的噪聲頻率外,還要考慮瞬時電流的反應能力。如 果 LC 的輸出端會有機會需要瞬間輸出大電流,則電感值太大會阻礙此大電流流經(jīng)此電感的速度,增加紋波噪聲(ripple noise)。電容值則和所能容忍的紋波噪聲規(guī)范值的大小有關。紋波噪聲值要求越小,電容值會較大。而電容的ESR/ESL 也會有影響。另外,如果這 LC 是放在開關式電源(switching regulation power)的輸出端時,還要注意此 LC 所產生的極點零點(pole/zero)對負反饋控制(negative feedback control)回路穩(wěn)定度的影響。
24、模擬電源處的濾波經(jīng)常是用 LC 電路。但是為什么有時 LC 比 RC 濾波效果差?
LC與 RC濾波效果的比較必須考慮所要濾掉的頻帶與電感值的選擇是否恰當。因為電感的感抗(reactance)大小與電感值和頻率有關。如果電源的噪聲頻率較低,而電感值又不夠大,這時濾波效果可能不如 RC。但是,使用 RC 濾波要付出的代價是電阻本身會耗能,效率較差,且要注意所選電阻能承受的功率。
25、如何盡可能的達到 EMC 要求,又不致造成太大的成本壓力?
PCB 板上會因 EMC 而增加的成本通常是因增加地層數(shù)目以增強屏蔽效應及增加了 ferrite bead、choke等抑制高頻諧波器件的緣故。除此之外,通常還是需搭配其它機構上的屏蔽結構才能使整個系統(tǒng)通過 EMC的要求。以下僅就 PCB 板的設計技巧提供幾個降低電路產生的電磁輻射效應。
盡可能選用信號斜率(slew rate)較慢的器件,以降低信號所產生的高頻成分。
注意高頻器件擺放的位置,不要太靠近對外的連接器。
注意高速信號的阻抗匹配,走線層及其回流電流路徑(return current path), 以減少高頻的反射與輻射。
在各器件的電源管腳放置足夠與適當?shù)娜ヱ詈想娙菀跃徍碗娫磳雍偷貙由系脑肼?。特別注意電容的頻率響應與溫度的特性是否符合設計所需。
對外的連接器附近的地可與地層做適當分割,并將連接器的地就近接到 chassis ground。
可適當運用 ground guard/shunt traces 在一些特別高速的信號旁。但要注意 guard/shunt traces 對走線特性阻抗的影響。
電源層比地層內縮 20H,H 為電源層與地層之間的距離。
展開更多
排行8提醒您:
1)為了您的資金安全,請選擇見面交易,任何要求預付定金、匯款等方式均存在風險,謹防上當受騙!
2)確認收貨前請仔細核驗產品質量,避免出現(xiàn)以次充好的情況。
3)該信息由排行8用戶自行發(fā)布,其真實性及合法性由發(fā)布人負責,排行8僅引用以供用戶參考,詳情請閱讀排行8免責條款。查看詳情>
2)確認收貨前請仔細核驗產品質量,避免出現(xiàn)以次充好的情況。
3)該信息由排行8用戶自行發(fā)布,其真實性及合法性由發(fā)布人負責,排行8僅引用以供用戶參考,詳情請閱讀排行8免責條款。查看詳情>